A reliable method to display authentic DNase I hypersensitive sites at long-ranges in single-copy genes from large genomes
نویسندگان
چکیده
The study of eukaryotic gene transcription depends on methods to discover distal cis-acting control sequences. Comparative bioinformatics is one powerful strategy to reveal these domains, but still requires conventional wet-bench techniques to elucidate their specificity and function. The DNase I hypersensitivity assay (DHA) is also a method to identify regulatory domains, but can also suggest their function. Technically however, the classical DHA is constrained to mapping gene loci in small increments of approximately 20 kb. This limitation hinders efficient and comprehensive analysis of distal gene regions. Here, we report an improved method termed mega-DHA that extends the range of existing DHAs to facilitate assaying intervals that approach 100 kb. We demonstrate its feasibility for efficient analysis of single-copy genes within a large and complex genome by assaying 230 kb of the human ADAMTS14-perforin-paladin gene cluster in four experiments. The results identify distinct networks of regulatory domains specific to expression of perforin and its two neighboring genes.
منابع مشابه
Role of upstream DNase I hypersensitive sites in the regulation of human alpha globin gene expression.
Erythroid-specific DNase 1 hypersensitive sites have been identified at the promoters of the human alpha-like genes and within the region from 4 to 40 kb upstream of the gene cluster. One of these sites, HS-40, has been shown previously to be the major regulator of tissue-specific alpha-globin gene expression. We have now examined the function of other hypersensitive sites by studying the expre...
متن کاملDNase I hypersensitive sites within the inducible qa gene cluster of Neurospora crassa.
DNase I hypersensitive regions were mapped within the 17.3-kilobase qa (quinic acid) gene cluster of Neurospora crassa. The 5'-flanking regions of the five qa structural genes and the two qa regulatory genes each contain DNase I hypersensitive sites under noninducing conditions and generally exhibit increases in DNase I cleavage upon induction of transcription with quinic acid. The two large in...
متن کاملNative genomic blotting: high-resolution mapping of DNase I-hypersensitive sites and protein-DNA interactions.
DNase I-hypersensitive sites are observed in the promoter regions of actively expressed genes, potentially active genes, and genes that were once active. We have developed an approach that greatly increases the resolution for mapping these sites by electrophoresing genomic DNA on native polyacrylamide gels prior to electroblotting and hybridization. This improved method has been used to scan th...
متن کاملEnhancer-blocking activity within the DNase I hypersensitive site 2 to 6 region between the TCR alpha and Dad1 genes.
Although tightly linked, the TCR alpha and delta genes are expressed specifically in T lymphocytes, whereas the Dad1 gene is ubiquitously expressed. Between TCR alpha and Dad1 are eight DNase I hypersensitive sites (HS). HS1 colocalizes with the TCR alpha enhancer (Ealpha) and is T cell-specific; HS2, -3, -4, -5, and -6 map downstream of HS1 and are tissue-nonspecific. The region spanning HS2-6...
متن کاملComparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006